the factlights Artikel
An Datenmanagement denken, heißt Digitalisierung lenken: Vier Aspekte, auf die Sie achten sollten!
Will man mit der Digitalisierung erfolgreich sein, braucht es dringend ein schlüssiges Datenmanagement-Konzept! Dies hat auch die aktuelle Studie the factlights 2020 ergeben. So sehen die Teilnehmer in mangelnder Datenqualität und fehlendem harmonisierten Datenbestand eine der größten Hauptherausforderung, um den neuen Anforderungen gerecht zu werden (vgl. Studien-PDF Seite 25). Zudem bestätigen sie, ein einheitlicher Datenbestand entscheidungsrelevanter Daten ist essenziell, sei eine der fünf wichtigsten Erkenntnisse der Digitalisierung für sie (vgl. Studien-PDF Seite 31).
Geschäftsmodelle werden vermehrt datengetrieben – dies bedeutet nicht zuletzt, dass Daten zu einer bedeutenden Ressource in Unternehmen werden. Um mit Daten effizient und strukturiert umzugehen benötigt es dringend ein Datenmanagement. Folgende vier Aspekte und Herausforderungen sollten Sie dabei im Auge behalten.
Daten sind ein wertvolles Asset
Heutige Anforderungen verlangen vermehrt eine Cross-funktionale Denke und das Bewusstsein, speziell mit Daten ein wertvolles Gut für interne und externe Zwecke zu besitzen. Trotz dieses Trends sehen zahlreiche Unternehmen Daten immer noch nicht als ein zentral zu organisierendes Asset an. Sie agieren vielmehr eher projektgetrieben und teilweise auch sehr unorganisiert. Zudem betrachten sie den Einsatz von Daten oftmals weniger unter dem Aspekt des Nutzenpotenzials und dessen Zuordnung, noch denken sie konkret an eine nachhaltige Verankerung der Datenerzeugung und Datennutzung in der Organisation.
Zwei essentielle Fragen, die in diesem Zusammenhang also immer und standardmäßig erörtert werden sollten:
1. Worauf genau zahlt die Nutzung der Daten ein? Geht es Organisationen primär darum Kosten zu sparen, will man die Qualität bestehender Produkte verbessern, will man Risiken minimieren, Umsatz steigern oder gar Effizienz erhöhen?
2. Wie ist der Aufbau einer funktionierende Data Governance zu realisieren, die entsprechende Ziele, im Rahmen der Datennutzung unterstützt und Risiken minimiert? Konkret geht es hier um Klärung und Zuordnung von Verantwortlichkeiten samt entsprechender Rollen, Vorschriften und Zyklen.
Daten(quellen) werden immer heterogen bleiben
Die Herausforderungen für Data & Analytics-Vorhaben sind häufig die heterogenen und nicht harmonisierten Datentöpfe und Systeme. Vielerorts trifft man diesbezüglich auf das Phänomen des „Hoffens auf ein Wunder“, dass alles wie von Zauberhand und vielleicht sogar durch die Einführung des nächsten Systems sauber werden möge.
Ein solches Wunder ist jedoch nicht zu erwarten, da die Datenbestände heterogen bleiben. Hinzu kommen die um sich greifenden Cloud-Lösungen, die die Heterogenität noch forcieren. Gerade weil der Idealzustand aber nie erreicht werden kann, sind schlüssige Konzepte für die Bewertung der notwendigen Datenqualität dringend gefragt.
Priorisierung der Datenharmonisierung
Unternehmen sind häufig bestrebt, prozessübergreifend valide und gesicherte Datenbestände aufzubauen. Harmonisieren und Integrieren lautet zumeist die dafür ausgegebene Zielsetzung. Und genau hier fängt oftmals ein nie enden wollendes Projekt an. Denn was gern verkannt wird ist, dass sich die datenorientierten Anforderungen in der Regel nicht auf eine Abteilung oder einen Unternehmensbereich begrenzen lassen – Data does not follow the process.
Die Datenentstehung und deren Nutzung entsprechen sehr häufig nicht der klassischen Linienorganisation. Daten entstehen nicht nur an einer Stelle oder entlang eines Prozesses, denn sie werden Abteilungs- und Bereichs-spezifisch angereichert und ergänzt. Schlussendlich sollen sie aber dennoch an unterschiedlichsten Stellen und in verschiedensten Sichten und Prozessübergängen bereitgestellt und ausgewertet werden können.
Analytics-Kompetenz ist unterbesetzt
Die zunehmende Bedeutung von Daten erfordert immer mehr Know-how in der Datenarbeit. Erfahrungsgemäß ist diese Analytics-Kompetenz aber in vielen Unternehmen unterbesetzt. Man kann sogar sagen, viele Organisationen verfügen über absolut unzureichende Ressourcen und Skills. Und auch der Arbeitsmarkt gibt nicht genügend Experten her, so dass man mit Personalaufbau dem entgegenwirken könnte. Angesichts dieses personellen Nadelöhrs liegt eine Lösung darin, die vorhandenen Ressourcen und Skills bestmöglich zu unterstützen.
Der Aufbau eines sehr gut strukturierten Datenmanagements mit entsprechenden Architekturen kann dabei helfen. Denn es ermöglicht Anwendern, sich mit Analytics auseinanderzusetzen, ohne mit der Komplexität des darunterliegenden Datenmanagements konfrontiert zu werden. Gerade auch dem Metadatenmanagement kommt hier ein hoher Stellenwert zu.
Dieser Artikel ist eine Expert Quote des QUNIS-Gründers und Geschäftsführer Steffen Vierkorn. Zu finden ist dieser Artikel in den Studienergebnissen von the factlights 2020. Mehr Artikel von und Infos zu QUNIS.
Weitere Expert Quotes, Empfehlungen, Daten, Fakten, Auswertungen, Branchenspecials und Extra Notes finden Sie in der Studie the factlights 2020.
Holen Sie hier kostenfrei Ihr persönliches Exemplar der Studienergebnisse als PDF:
the factlights News
the factlights Top-Thema
the factlights bringt Einblicke und Learnings:
- Am Puls der Zeit
the factlights 2020 hat über 1.000 Unternehmen im deutschsprachigen Raum zu ihrer Realität von Digitalisierung, Analytics und Datenarbeit befragt. Highlights, Updates und die kompletten Studienergebnisse gibt's hier. - Experten analysieren und empfehlen
Namhafte Vertreter führender Unternehmen nehmen Stellung zu aktuellen Trends, stellen Checklisten, Use Cases, Whitepaper bereit und stehen Ihnen gerne mit Empfehlungen, Tipps und Best Practices rund um die Themen der Digitalisierung und Datenarbeit zur Seite. - Studien-Ergebnisse holen
Sichern Sie sich Ihr persönliches Exemplar mit allen Ergebnissen, Einschätzungen, Branchenspecials, Extra Notes, Expert Quotes und profitieren Sie von Empfehlungen und Learnings.