Die größte Studie zu Digitalisierung und Datenarbeit

Stempel_35

Wir haben 1.000 Unternehmen befragt

97% sagen, sie wollen auch in konjunkturschwachen Zeiten in Digitalisierung investieren, 60% der Teilnehmer sind Teil einer Digitalisierungsinitiative, als Top-Hindernis wird die Datenqualität gesehen. Datenstau oder digitale Überholspur - was gilt?

97% sagen, sie wollen auch in konjunkturschwachen Zeiten in Digitalisierung investieren, 60% der Teilnehmer sind Teil einer Digitalisierungsinitiative, als Top-Hindernis wird die Datenqualität gesehen. Datenstau oder digitale Überholspur - was gilt?

the factlights News

Data Governance ist zentral für Data & Analytics

Gerade im Zuge der Digitalisierung hat so gut wie jedes Unternehmen Data & Analytics Initiativen auf seinem Zettel und treibt diese mit Volldampf voran. Dem Regeln von Verfügbarkeit, Integrität und Sicherheit der verwendeten Daten, der sogenannten Data Governance, wird in diesem Zuge jedoch zumeist eher weniger Aufmerksamkeit geschenkt.

Dass man der Data Governance nicht so viel Aufmerksamkeit zollt, mag zum einen daran liegen, dass es sich um ein vergleichsweises neues Thema handelt. Zum anderen ist Data Governancen rechtslastig, wird mit Disziplin, Verwaltung und Aufwand konnotiert und gilt gemeinhin als „trocken und unattraktiv“. Und wie wir alle wissen: Um solche Themen kümmert man sich nicht wirklich gern.

Ein fehlerhafter Umgang mit Daten jedoch kann schnell zu erheblichen Wirtschafts- und Imageschäden führen. Rechtliche Konsequenzen, Bußgelder, Strafen und empfindliche Schadensersatzansprüchen drohen.

Auf der Hand liegt, wo immer es zu Problemen mit Daten kommt, weißt sich die Gesamtverantwortung direkt der Geschäftsführung und dem Vorstand zu; unter Umständen greift deren Haftungsrisiko sogar bis aufs Privatvermögen durch. Schon allein deswegen sollten das Vorhandensein und konsequente Leben einer Data Governance ein ganz persönliches Anliegen des Top-Managements sein.

Im Gegensatz zur Top-Führungsriege steht der Mitarbeiter, der als ausführendes Organ nach bestem Wissen und Gewissen handelt, bei einer Datenpanne zwar nicht in legaler Verantwortung. Nichtsdestotrotz ist auch sein Handeln oder Nichthandeln von unliebsamen persönlichen Konsequenzen bedroht. Denn selbst eine Panne, die auf Motivation und Engagement basiert kann zu Arbeitsplatzverlust oder zumindest internen Problemen führen. Um diesem Konflikt aus dem Weg zu gehen, kann es sein, dass Mitarbeiter lieber nichts tun bevor sie etwas tun, von dem sie nicht recht wissen, ob sie es dürfen oder nicht. Ineffizienz bis hin zum vollständigen Stillstand von Initiativen ist die Folge für das Unternehmen.

Unbenommen wäre es also förderlich zu wissen, was man am Arbeitsplatz mit welchen Daten tun darf und was nicht. Und zwar sowohl für den normalen Mitarbeiter, als auch für die Führungskräfte. Letzteren fällt in diesem Zusammenhang wohl der undankbarste Part zu: Sie stehen im Kreuzfeuer von Management und Mitarbeitern, müssen delegierte Aufgabenstellungen weitertragen und auf deren Umsetzung bedacht sein.

Data Governance geht jeden an – vom Mitarbeiter bis zum Top Management.
Risiken erkennen, Schäden vermeiden, Zukunftschancen ergreifen.

Ohne klare Data Governance und verlässliche Richtlinien kann die Arbeit und er Umgang mit Daten also schnell zum Spiel mit dem Feuer werden und man wird zu einem Getriebenen in einem Verantwortungsvakuum mit allerlei Haftungsfallen und persönlichen Wagnissen.

Hinzu kommt, dass auch gerade in Zeiten des War of Talents und Fachkräftemangels die hohen Notwendigkeit besteht im Hinblick auf Mitarbeiter-Sicherung und Motivation aktiv zu werden. Unter Betrachtung aller Chancen und Risiken sollte also keine Data & Analytics Initiative auf- bzw. umgesetzt werden ohne nicht parallel eine entsprechenden Data-Governance-Initiative zu betreiben.

Die gute Nachricht: Das Ganze hört sich schlimmer an als es ist. Vielmehr, eine Data & Analytics Governance ist in überschaubaren und leicht verdaubaren Schritten machbar. Einzige Voraussetzung, die Etappenziele müssen sauber definiert und ein dazu passender Methoden- und Maßnahmenkatalog erstellt worden sein. Auf diesem soliden Fundament lässt sich eine passende Data & Analytics Governance in die Organisation und Prozesse integrieren und die letztlich nachhaltige Umsetzung wird möglich.

Das QUNIS Data Governance Framework sorgt für ein strukturiertes Vorgehen.

Basierend auf Praxis-Erfahrung und Know-how hat QUNIS ein dreistufiges Framework mit insgesamt acht Handlungsfeldern entwickelt, das für Business-Intelligence- und Andvanced-Analytics-Initiativen eine verlässliche Orientierungshilfe für den Aufbau und die Etablierung einer Data Governance stellt.

Auf der ersten Stufe geht es darum, die Zielsetzung festzulegen: Welche Daten gibt es und in welchem Bezug stehen diese zu den rechtlichen Vorgaben bzw. welche Maßnahmen sind konkret daraus abzuleiten? Hier geht es um so wichtige Dinge wie ein gut funktionierendes Risikomanagement und den Blick auf sensible Datenschnittstellen zu Externen. Zudem werden aber auch ganz generell Fragen etwa zur Gewährleistung der Datenqualität behandelt.

Im darauf aufbauenden Bereich von Methoden und Maßnahmen werden rechtliche Vorgaben geklärt: Welche Daten und Prozesse korrespondieren mit welchen rechtlichen Normen wie GDPdU oder DSGVO? Im Fokus stehen Datenzugriffs- und Datenberechtigungskonzepte oder Back-Up-Strategien zur durchgängigen Gewährleistung der Datenverfügbarkeit. Im Sinne des Projektmanagements werden zudem die Vorgehensweisen erarbeitet, also beispielsweise Dokumentationsrichtlinien festgelegt, Guidelines für die Mitarbeiter erarbeitet, Recovery-Pläne und Definition von Messpunkten.

Zu guter Letzt geht es darum, das Erarbeitete in die Organisation und die laufenden Prozesse zu integrieren. Um klare Verantwortlichkeiten definieren zu können, wird das bewährte QUNIS-Rollenmodell herangezogen als Basis für den individuellen Zuschnitt auf konkrete Rahmenbedingungen und Bedürfnisse des jeweiligen Unternehmens. Darauf aufbauend lassen sich schließlich trennscharfe Strukturen herausarbeiten, die jedem betroffenen Teilbereich Verantwortlichkeiten und Zuständigkeiten zuordnen.

Kein Data & Analytics Projekt ohne Data Governance!

Es gibt viele gute Gründe dafür, seine Daten im Unternehmen zu schützen bzw. zu sichern und dabei rechtskonform und werteorientiert zu handeln. Und kein Data & Analytics Projekt sollte mehr ohne die Betrachtung der Data Governance aufgesetzt werden. QUNIS unterstützt Sie dabei, eine ganz individuelle Governance für die Data & Analytics Initiativen in Ihrem Unternehmen umzusetzen und erfolgreich zu steuern. Alles was Sie tun müssen ist uns kontaktieren. Beim Rest begleiten wir Sie kompetent. MEHR ZU QUNIS

Mehr Infos zum QUNIS Data Governance Framework anfordern:

News von QUNIS

Artikel

BI und Advanced Analytics müssen jetzt den Business Value liefern

Die von der Business Intelligence (BI) hervorgebrachten Konzepte und Technologien haben sich in der Praxis bewährt und sind anerkannt.

Moderne Frontends bringen die im Kontext von Big Data exponentiell gewachsenen Datenmengen, -arten und -ströme gut unter einen Hut. Die Cloud hat im Analytics-Alltag ihren Platz gefunden und sorgt für Verfügbarkeit und Effizienz. Durch den breiteren Einsatz von Analytics in Unternehmen steht nun der nachhaltige Business Value auf dem Programm.

Artikel

AI wird konkret – Empfehlungen für die Praxis

Es herrscht Einigkeit darüber, dass AI in der Geschäftswelt unbegrenzte Potenziale eröffnet, wenn passende Anwendungsbereiche gefunden werden.

AI-Methoden und Tools haben sich rasant entwickelt und stehen in einem hohen Reifegrad bereit. Werden die Begrifflichkeiten auch oft unscharf benutzt so empfehlen sich neben der Suche nach völlig neuen Geschäftsmodellen vor allem zwei spannende Einsatzfelder für den Einstieg in die AI-Welt, für die es jedoch ein paar Aspekte zu beachten gilt.

Tipp

Begrifflichkeiten der Digitalisierung kompakt erklärt

Die Digitalisierung treibt uns, Data & Analytics sind auf dem Vormarsch, die Technologie entwickelt sich rasant und die Begrifflichkeiten mit ihr.

Von Advanced Analytics über IoT bis Künstliche Intelligenz und Machine Learning. Die Digitalisierung bringt neue Begrifflichkeiten und Akronyme hervor. Was ist darunter zu verstehen und wie hängen diese zusammen. Hier finden Sie einige der zentralen Begriffe kurz und griffig definiert.

Tipp

Der Citizen Data Scientist formiert sich als neue, spannende Rolle im Analytics-Umfeld

Die Digitalisierung produziert Unmengen und eine bisher nie dagewesene Vielfalt an Daten. Das Generieren von Mehrwert aus diesen Big Data wird zum erfolgskritischen Faktor.

Data Scientists als Meister der Analytics sind eine gefragte aber äußerst rare Ressource. Die neue Rolle des Citizen Data Scientist verspricht Abhilfe für den Ressourcen-Engpass. Es gilt, die klugen und neugierigen Köpfe im Unternhemen zu finden, sie zu befähigen und einzusetzen.

Download

QUNIS AI Factsheets. Kompakter Überblick zu den neun wichtigsten AI-Methoden

Von Clustering, Regression, Anomaly Detection und Survival Analysis bis hin zu Natural Language Processing. QUNIS AI-Factsheets direkt als PDF holen.

QUNIS Data Scientists haben neun ihrer beliebtesten Methoden in den AI-Factsheets kompakt und übersichtlich zusammengestellt. Gleich kostenfrei holen und mehr zu typischen Fragestellungen, passenden Anwendungsfällen und Anforderungen an Form und Art der notwendigen Daten erfahren.

the factlights Top-Thema

STUDIEN HIGHLIGHTS

Erste Ergebnisse für Sie zusammengefasst

97% der Unternehmen sagen: "Wir investieren auch in konjunkturschwachen Zeiten in Digitalisierung." 60% der Teilnehmer sind Teil einer Digitalisierungsinitiative, als Top-Hindernis wird die Datenqualität gesehen – Datenstau oder digitale Überholspur? Was gilt?

ARTIFICIAL INTELLIGENCE

AI wird konkret – Empfehlungen für die Praxis

Neue AI-Methoden und -Tools eröffnen in der Geschäftswelt unbegrenzte Potenziale, wenn sie in den Unternehmensalltag integriert werden

PROZESSOPTIMIERUNG

Eine Grundlage für die Digitalisierung der operativen Steuerfunktion

Das Prozesshaus vereint die sechs wesentlichen Komponenten zur Optimierung und Digitalisierung von Prozessen

EU-RICHTLINIE

Neue Digitale-Inhalte-Richtline – Umdenken für die digitale Branche?

Für die Unternehmen der digitalen Branche stehen im Bereich B2B erhebliche rechtliche Änderungen am Horizont

INNOVATIONSPROZESS

Vorgehensmodell für die Portfolio-Entwicklung in Innovationsprozessen

Das Portfolio-Entwicklungsmodell gibt Orientierung, um mit neuen VUCA-Gegebenheiten methodisch umzugehen

the factlights bringt Ihnen spannende Einblicke:

  1. Am Puls der Zeit
    the factlights 2020 hat über 1.000 Unternehmen im deutschsprachigen Raum zu ihrer Realität von Digitalisierung, Analytics und Datenarbeit befragt. Highlights, Updates und die kompletten Studienergebnisse gibt's hier.
  2. Experten analysieren und empfehlen
    Namhafte Vertreter führender Unternehmen nehmen Stellung zu aktuellen Trends, stellen Checklisten, Use Cases, Whitepaper bereit und stehen Ihnen gerne mit Empfehlungen, Tipps und Best Practices rund um die Themen der Digitalisierung und Datenarbeit zur Seite. KONTAKTIEREN SIE UNS!
  3. Detaillierte Ergebnisse sichern
    Damit Sie nichts verpassen, melden Sie sich am besten gleich unverbindlich an und Sie erhalten regelmäßig spannende Updates sowie die kompletten Ergebnisse als Management Summary mit detaillierte Analysen, Handlungsempfehlungen und Experten-Kommentare aus verschiedenen Branchen und Disziplinen zugesandt.

THE FACTLIGHTS 2020

Was macht the factlights 2020?

the factlights 2020 stellt Fragen und gibt Antworten: Als zentrale Studie im deutschsprachigen Raum hinterfragt the factlights 2020 den Stand von Data & Analytics Initiativen in Unternehmen und deren Einfluss auf den Arbeitsalltag  jedes einzelnen.